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The reaction p-j-p —> d-\-ir+ in the BeV region is studied within the one-pion-exchange model with final-
state interaction between the neutron and proton to form the deuteron. A simple approximate evaluation of 
the loop integral gives the final differential cross section in terms of the pion-nucleon coupling constant, 
the deuteron wave function normalization, the irp elastic scattering cross section, and the Ferrari-Selleri 
form factor. Comparisons with the limited experimental results are made and fairly good agreement is ob
tained. The large forward scattering cross section near cm. energy 3.0 BeV is explained in terms of the 
large backward ir+p elastic scattering cross section at irp cm. energy 1.92 BeV [/ = §, J — i(^) resonance]. 
Further implications of the calculation are discussed. 

I. INTRODUCTION 

THE one-pion-exchange model1 has been very 
successful in the interpretation of pion production 

in proton-proton collisions in the 1-3-BeV region.2 

Several pion-nucleon isobars have been observed, 
namely, the 1.23-BeV isobar (the 33 resonance) the 
1.52-BeV, and the 1.69-BeV isobars. The 1.92-BeV 
isobar has not yet been observed, although the threshold 
energy is 2.46 BeV. Presumably, this isobar will also 
have been produced at energies much above threshold. 

Encouraged by the quantitative success of the one-
pion-exchange model we attempt here to extend the 
calculation to the reaction 

p+p->d+7r+. (1) 

The physics involved is rather simple, because process 
(1) is closely related to 

p-\-p —> n+p-{-Tr+ (2) 

with a final-state interaction between neutron and 
prototi to form a deuteron. 

Although the ideas involved are elementary in nature, 
there are several features of the problem which deserve 
comment at the outset before the detailed calculation is 
presented. First, we consider the number of dynamical 
variables in reactions (1) and (2). Reaction (1) has two 
particles in the final state, and we have just two vari
ables, the total c m . energy U, and the four-momentum 
transfer squared u= — (pi—k2)

2. Reaction (2) has three 
particles in the final state, and we have five independent 

n P j7 

FIG. 1. One-pion-exchange diagram for 
the process p+p —> n-\-p-\-Tr+. 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

1 C.'Goebel, Phys. Rev. Letters 1, 337 (1958); G. F. Chew and 
F. E. Low, Phys. Rev. 113, 1640 (1959). 

2 G. B. Chadwick, G. B. Collins, P. J. Duke, T. Fujii, N. C. 
Hien, M. A. R. Kemp, and F. Turkot, Phys. Rev. 128,1823 (1962). 
This article also contains a very complete list of references to other 
works. 

variables. We choose them to be U, u, defined as in 
reaction (1), and s= — (ki+pi)2, ki = (tii—pi)2, and 
d2={ni-\-p2)

2. The various symbols for the four-
momenta will be defined in Sec. I I (see Figs. 1-3). 

When the neutron and proton in the final state com
bine to form the deuteron, the individual constituent 
nucleons are off the mass shell. But the variable 
d2=(ni-{-p2)

2 must be equal to — Mi, Ma being the 
deuteron mass. As a result we have now six variables, 
namely, U, u, s, ki, pi, and ni. Clearly, we are left with 
a four-dimensional integral over s, ki, pi, and ni. In 
other words our model requires the calculation of a loop 
integration. I t is well known that loop integrals involv
ing strongly interacting particles are extremely difficult 
to handle. Here, we shall appeal to our knowledge that 
the deuteron is a very loosely bound system, and con
sequently the contribution to the loop integral will 
mainly come from the neighborhood where pi = ni 
= —M2. With this approximation the neutron-proton 
deuteron vertex is simply related to the deuteron 
asymptotic normalization, and the nucleon-pion coupl
ing constant and nucleon-pion elastic scattering ampli
tude can be easily employed in our calculation. We have 
to emphasize that there are many fundamental un
certainties in our formulation, and the present calcu
lation should be regarded as a first attempt in a quanti
tative understanding of the problem. However, the 
numerical results are quite encouraging. 

II. FORMULATION OF THE PROBLEM 

First, let us write down the w++p —> 7r++p scattering 
amplitude, where the incoming pion and the outgoing 
proton are not on the mass shell. (See Fig. 4.) We define 
the three variables s, t, and u as follows: 

s=-(pi+h)2=-(p2+k2)
2, 

t=-(pi-p2)2=-(k2-k1)
2, 

u=-(p1-k2)
2=-(p2-k1)

2, 
(2.1) 

where ki, pi are the incoming pion and proton momenta 
and k2, p2 are the outgoing pion and proton momenta, 
respectively. We have here 

-M2, -fj2, pi+ki=p2+k2 
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d(d) d(d) 

FIG. 2. Triangle diagram with 
TT+ exchange in p+p -> d+ir+. n ' n l ' , 

and 

7T + (k 2 ) 

W l > P(P|) 

= [ M 2 + M 2 ] - [ ^ 2 2 + ^ I 2 ] . 

We choose ki2, p2
2, s, and u as the four independent 

scalars. The pion-nucleon elastic scattering cross section 
can now be written down. From Lorentz invariance we 
have3 

M=A +iBq+iCr+Dqr, (2.2) 
where 

q=h(ki+k2)9 r=i(*i—*2). 
If the outgoing proton is on the mass shell, p2

2 = — M2, 
then the last two terms in Eq. (2.2) drop out, and we 
obtain the familiar form. In general, A, B, C, and D are 
functions of the four invariant scalars, s, u, ki2, and p2. 

The physical amplitude for w+-\-p scattering is 
obtained by setting &I2=-JU2 , p22=-M2 in Eq. (2.2), 

M=A+iBq, 

T=u(p2)tA+iBq2u(p1). 

(2.20 

(2.3) 

When we sum over the spins of the initial and final 
protons, we obtain for the square of the matrix element 
the following form 

1 
-2{\A\2Zs+u-2ti2+2M2~] E [ r | s 

spins (2M)2 

+ \B\ V - (s-M2) (u-M2)~\ 

+M{AB*+A*B)(u-s)}. 

The cross section for ir^+p —> ir++p is 

(2.4) 

o-(x++/>_ • ir++p) 

X [<Pp*Pks 

1 1 /M\2 

7r)2 ( 2 W ) 2 \ £ / (2TT)2 (2W) 

w£ 

&V S spins 

Therefore, 

E | r 
spins 

- — ~ ( 
(2x)2 (2w)2\ 

/ 

= ( 2 x ) 2 ( - \ 

M\ 2 w£ 

(2x)2 (2w)2\£/ V * 

w£ 
x /do*,*2—* E k| 

^ V ^ spins 

2s-

(2.5) 

(2.6) 

3 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, 
Phys. Rev. 106, 1337 (1957). 

FIG. 3. Triangle diagram with 
7T° exchange in p-\-p —> d+7r+. 

7T+(k2) 

7r°(k,r 

p(p',) P(P,) 

where all the quantities are evaluated in the irp cm. 
system, and 

E=(k2+M2)1/2, u=(k2+ix2)1/2, E+u^s1'2. 

Now we turn our attention to the study of the matrix 
element for reaction (1). It can be written 

with 

T1 = -

T=T!-T2, (2.7) 

(2T)< 

X-

• —inx+M 

Mi2+M2 — i€ 

ip2+M 

l^Gybu(p!f) 

p2
2+M2-ie 

[_A+iqB+irC+qrDl 

Xufa} 
ki2+ix2—ie 

&m. (2.8) 

The superscript T means taking the transpose of the 
quantity in bracket. The symbol G denotes the neutron-
proton-pion vertex function, and is here a function of 
two variables, G=G(ni2,ki2). The symbol T denotes the 
neutron-proton-deuteron vertex function, with both the 
neutron and proton off the mass shell. The scalar func
tions A, B, C, and D have already been introduced at 
the beginning of this section. In general, these six func
tions are extremely complicated and we have no idea 
whatsoever how they may behave. But as we shall see 
below, in the approximation we make, these six func
tions are all related to some experimentally measurable 
quantities. T2 is obtained from T\ by interchanging pi 
and p\. In Eq. (2.8) we wrote down the contribution 
from the 7r+ exchange term only. The T° exchange 
contribution can be similarly written down with appro
priate trivial changes. In the following discussion we 
shall only treat the x+ exchange term. In the end when 
actual numerical calculation is performed we shall, of 
course, also include the T° exchange contribution. 

Since the integrand in Eq. (2.8) contains functions 
depending on the invariant scalars, m2, p2

2
y ki2, and s, it 

p(Po) 

FIG. 4. Diagram for Tr+-\-p —> 7r++p. 

7T + (k 2 ) 

P(P|> 7 T + ( k . ) 
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will facilitate the evaluation of the integral if we change 
the integration variable from dnf to dni dp2

2 dki2 ds. 
The Jacobian of the transformation can be obtained in 
a straightforward manner. 

1 

1 6 ^ M t f * i r f i / 
•dnWpfdkWs, (2.9) 

where ea^v is the totally antisymmetric tensor. 
In the rest system of the deuteron, 

ni2=nid2-niQd
2, (2.10) 

p22= (d-ni)
2= -Md

2+n1
2+2Mdn1Qd. (2.11) 

The integrand in Eq. (2.8) has poles at ni2= —M2 and 
p22=—M2. Therefore, the contribution to the ni2 and 
p22 integration will come mainly from those neighbor
hoods. The range of integration can thus be effectively 
extended from — <*> to oo. Equation (2.8) now becomes 

1 r r r00 r00 1 
Tx= / ds / dki2 / dm2 / dpi 

(2TT)4J J J-* J_ 16e^pla} 

{ 
klfrklpplv 

-inx+M - f 
X| MGyMpi)\ 

xr-

-ni2+M2-ie 

-ip2+M 

p22+M2-iei~ 
[_A+iqB+irC+qrD~\ 

1 

ki2-\-fj,2—ie 
(2.12) 

In order to proceed further we make the drastic assump
tion that the integrand behaves nicely in the upper 
half-plane and at infinity in both the ni and the pi 
planes. The infinite line integrals can now be trans
formed into contour integrals, and the residue at the 
poles can be extracted. 

Tt= (2TTZ)2 [ds [dki* 
(2TT)4 J J I6e«^plak a k2pkitlpiv' 

XZ(-in1+M)MGy,u(pi)jT(-ip2+M) 

1 
X LA +iqBlu(p1) — , 

ki2+fJL2—ie 
(2.13) 

where all quantities in the integrand are now evaluated 
at ni2=p22= —M2. The C and D terms in the integrand 
have now vanished, because for C 

(-ip2+M)ru(p1) = U-ip2+M)(k1-k2)u(p1) 

= %i(-ip2+M)(-ip2-M)u(p1) 

= -¥(p22+M2)u(p1) = 0, 

and the D term can now be incorporated into A and B. 
The s integral can easily be transformed into an azimu-

thal integration. In the deuteron rest system 

1 
ds = 2-

Mdpu 
e^piMKpJdv. (2.14) 

The ranges of integration for ki2 can be seen from the 
relation 

h^ipx'-nx)2 

= -2M2-2nvpi' 

= - 2M2- 2nupu cosP+Mapiod'. (2.15) 

In the deuteron rest system, 

mod^Wd, 

nid—iti, 

and K2=Me, e being the binding energy of the deuteron. 
Since the binding energy of the deuteron is so low, the 

ki2 integration can well be approximated by the product 
of the average value of the integrand and the width of 
the integral. The width is 4i K pu', proportional to the 
square root of the binding energy. 

Equation (2.13) is now reduced to 

T i = -
(27T) 

(27ri): 
47T 

-teKpiJ 
l6Mdpid 

XLi-im+M^GyMpiW 

XT(-ip2+M)lA+iqB']u(p1)-
1 

(2.16) 
fci24V 

where all quantities in Eq. (2.16) are to be evaluated at 

pf=n?=-M*, 
and 

k1
2^-2M2+Mdp1odf^ 

The function G is now evaluated at ni= —M2, and is 
therefore simply related to the pionic form factor of the 
nucleon. The function T is evaluated at p22=ni2 = — M2, 
and is related to the deuteron wave function normaliza
tion. Here we shall use the form given by Blankenbecler 
et aU 

A -]Md—id 
r = — | i+—s12(k) |T^r^(7-?)C 

4irNr p 

M L 81'2 

£wN Md—id\ 

[( M 2-J2Md 

where 

C = 7 o 7 2 , C 2 = l , C T / C = - T M 

K 1 1 

J2\/2Md 

i+—\y^)~—-(k^)(k'7)\c, 
81/2/ 

3p_ 

V2^2 

N2=-
2ir 1 + p 2 1 — Kye 

(2.17) 

and C 7 5 C = 7 5 . 

and r = 74r+74. 

4 M. L. Goldberger, Y. Nambu, and R. Oehme, Ann. Phys. 
(Paris) 2, 226 (1957), especially pp. 250-252; R. Blankenbecler, 
M. L. Goldberger, and F. R. Halpern, Nucl. Phys. 12, 629 (1959). 
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p is a measure of the amount of D state in the deuteron, 
and p 2 ~ 4 % . y e is the effective range. £ is the deuteron 
polarization vector, and d •£=(), d-k = 0, k2=—n2 

= —Me, where k = ^(ni—p2), and e=2M—Afd. 
The square of the matrix element T is 

| r i 2 = | r i - r 2 | a 

« | r i | 2 + r i 2 | , (2.18) 

p + p-*d + T+ IN BeV R E G I O N B457 

contribution T\ now becomes 

1 K 
Ti= K-in1+M)^Gybu(p1

,)JT(-ip2+M) 
AwMd 

XC(f^3 /2-^ l /2 )+^( |^3 /2-p l /2 ) ] 

1 
Xu(p!)-

where we have neglected the interference term. We will 
see presently that when Tx is large, T2 is small, and vice 
versa. Therefore, the interference term is probably not 
too important. When we sum over the final deuteron 
spin and average over the initial proton spins, we obtain 
(for details see Appendix) 

i Z |r,| 
spins 

l / K \ 2 l r4*-^ l i2 

= — ( — ) i2(?kA — 
{ITCYXIMJ (&i2+M22)2 L M 2-JlMiA 

'/ W J 

X (2MMd+Mf){ (2TY(—) Is—"Wi2), (2.19) 
L \M/ dQkJ 

*i2+M2 
(2.21) 

Correspondingly in Eq. (2.19) daTP/dQhl should be 
replaced by 

( ' 
2, o (T++P-

dttk2 

da 

dti, 

da -| 
+ 3 (TT~+P —> 7r°+n) , 

d&k2 J 

X {3^1+—^ - 2 - ^ 1 + P v 3P/ p 
— ) - 2 - ( 
x/8/ Vl\ 81'2 

2 \ 2 darp' 

The final expression for the differential cross section is 

da 3 - (S/^2)p+ (27/8)p2 G2 dv kx
2 

= 2 F2(h2)eK 
d£ld 1 + P 2 4TT ^ ( ^ I 2 + M 2 ) 2 

r J(T+ Jo" - Jc7° "1 

X*|3-^ — + 3 T H + ( ^ ^ I ' ) , (2.22) 

where we have introduced the Ferrari-Selleri off the 
mass-shell correction function F(ki2),5 

where 
dQk2 d&k2 JOfc2J 

F(W) = 
1 

l+(£ i 2 +M 2 ) /« 
a ^ 6 0 jit2 

and G is now just the pion nucleon coupling constant 
withG 2 /47r=15. 

In the center-of-mass system the differential scatter
ing cross section for reaction (1.1) is 

da 1 /2M\2duMd 

—(—-) 1 S Ci^i | 2+I^i 2 ] , (2. 
<ft2d (2TT)2\ U / Sp 

where 

20) 

( ^ 2 + M / ) 1 / 2 + (JC7
2+M2)1/2=tf, 

dou=(du2+Md
2)l/2, 

2(p2+M2)1/2=U. 

So far we have neglected the w0 exchange contribu
tion, which can be easily included. Instead of VZ G in 
Eq. (2.16) we have G, and instead of A and B (which 
should be properly written as A 3/2 and JB3/2) we have 
^2/3)(~Az/2+A1/2) and (v2/3)(-£3/2+£i/2), and 
instead of T we have — T. The subscripts f and J denote 
the different isotopic contributions. Including the w° 

6 E. Ferrari and F. Selleri, Phys. Rev. Letters 7, 387 (1961). 

h2= -~2M2+\\JJ2+Mi-ix2^-dup cosfl, (2.23) 

6=angle between outgoing deuteron and incoming 
proton in cm. , 0<6<ir/2 and 

s=%tU2-Md
2+v2~]+M2. 

da/dttk2, the differential w-p scattering cross section, is 
to be evaluated a t its c m . energy s112 and its c m . scat
tering angle 5, where we have the relationship 

u= _ (p1-k2)
2=M2+tj2-Uk2ou+2pdu cos0 

= M2+fx2-2p1Qsk20s-2plsk2s cosS, (2.24) 
with 

W = ( l / 2 t f ) [ t f 2 + M
2 - M d

2 ] , 

pizs=(V2sli2)[s+M2+kl
2'], 

k2os=(l/2sV2)Zs+fx2-M2-], 
£ 2 S = [ £ 2 0 S

2 - M 2 ] 1 / 2 . 

The second term in Eq. (2.22) is obtained from the first 
term by interchanging px and pi. This interchange 
amounts to changing cosfl to — cos0 in Eqs. (2.23) and 
(2.24). For cos0=l , k±2 is a minimum, cos5= — 1 , and 
we see that backward wp scattering is very important 
for deuteron formation in the forward direction (either 
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• MESHCHERYAKOV et a I. 
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a B.S. ZORN 
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TOTAL ENERGY IN THE c.m. (BeV) 

3.2 

FIG. 5. Differential cross section for p+p —> d+7r+ in c.m. 
system with cos0=l. (The solid curve is the calculated curve 
including backward irp scattering only.) 

0° or 180° in the c.m. due to the symmetry of the two 
incident protons). 

When cos0= — 1, ki2 is very large, and the exchanged 
virtual pion is very far from the mass shell. Our approxi
mation now becomes highly dubious, since for large 
momentum transfer (ki2>60 JJ2), we have no reason to 
expect the one-pion-exchange mechanism to be im
portant. Nevertheless, we have also calculated the 
contribution from large h2. Again we include the 
Ferrari-Selleri form factor, which is no doubt invalid for 
such large momentum transfers. It is satisfying that in 
the peak region for deuteron production we find that the 
contribution from large k±2 is much less than that from 
small ki2, and consequently does not influence the calcu
lated cross sections in any essential way. 

III. RESULTS AND DISCUSSION 

In Eq. (2.18) we have neglected the interference 
term, which is justified only when one term is much 
larger than the other. This approximation means that 
our calculation becomes poorer when we are away from 
the forward direction, and becomes highly unreliable at 
90° in the c.m. system where the interference is largest. 
Therefore, we have computed the differential cross 
sections for deuteron production at 0°, cos0=l,6 where 
we have some available data to compare with.7'8 (The 

6 J. A. Helland, T. J. Devlin, D. E. Hagge, M. J. Longo, B. J. 
Mover, and C. D. Wood, Phys. Rev. Letters 10, 27 (1963); D. E. 
Damouth, L. W. Jones, and M. L. Perl, ibid. 11, 287 (1963); M. L. 
Perl, L. W. Jones, and C. C. Ting (to be published). 

7 F. Turkot, G. B. Collins, and T. Fujii, Phys. Rev. Letters 11, 

experiment of Cocconi et at. was performed at 60 mrad 
in the laboratory system. Here, we have made no dis
tinction about these two slightly different directions.) 
The calculated cross sections are limited in accuracy by 
our lack of information on the backward scattering 
cross section in ir~Jrp --» ir0+n. From Fig. 5 we see that 
the calculated cross sections are compatible with the 
experimental results within a factor of two or three. The 
outstanding feature of the calculated curve is the 
prominent peak at J7~3.0 BeV. Our model explains it 
in terms of the large backward ir+p scattering cross 
section due to the / = § , J—\ resonance at s1/2=1920 
MeV. This explanation is analogous to the phenomeno-
logical theory given by Mandelstam for the other even 
larger deuteron peak at £7 = 2.2 BeV,9 where the 7=f, 
J=%Tp resonance plays a dominent role. In fact, in the 
neighborhood of £7 = 2.2 BeV, we obtain a calculated 
value at 0° which is very close to the experimental value. 

The general qualitative agreement between the cal
culated results and experiments seems to indicate that 
the one-pion-exchange mechanism may indeed play an 
important role in deuteron production. However, 
quantitatively the calculated results are much larger 
than the experimental cross sections in the peak region 
near 3.0 BeV. There are several possible sources of error 
to account for this discrepancy. One major uncertainty 
is the way the loop integral was evaluated. Another 
probable source of error may be in the off the mass-shell 
correction we employed, since it is in the large momen
tum transfer region (large ki2) that we have serious 
discrepancies. Further theoretical studies and experi
mental investigations are certainly desirable. 

Finally we comment briefly on the one-neutron-
exchange graph, Fig. 6. It is certainly a simpler graph 
than the one-pion-exchange graph. But because of this 
simple structure, we expect its contribution to vary 
smoothly with energy. In addition, we have the further 
difficulty of really not knowing how to compute this 
graph.10 Since the exchanged neutron is often far away 
from the mass shell, both vertices are modified in an 
unknown manner from their on-the-mass shell value. 
We tend to think that the neutron exchange graph does 
not play any important role in the energy region of 
interest here. 

FIG. 6. The neutron exchange graph 
in p-\-p —> d-\-7r+. 

474 (1963); M. G. Mescheryakov and B. S. Neganov, Dokl. Akad. 
Nauk SSSR 100, 673, 677 (1955). 

8 G. Cocconi, E. Lillethun, J. P. Scanlon, C. C. Ting, J. Walters, 
and A. M. Wetherell, Phys. Letters 7, 222 (1963). 

9 S . Mandelstam, Proc. Roy. Soc. (London) A244, 491 (1958). 
10 See, however, a similar calculation by J. Bernstein, Phys. Rev. 

129, 2323 (1963). 
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1 K 1 
Tl = G[_-in1+M)ybu(pi)YT(-ip2+M)(A+iqB)u(pl) , (Al) 

27rV5Md kf+u2 

and 

i r i l 2 = | G I \M\2 
r 1 K 1 I2 

n i iH G— 
L2TT^Md ^I2+M2J 

When we sum over the final deuteron spins and average over the initial proton spins, we get 

1 E W 2 = l E Tr{l(-inl+M)y,u(p1
/)u(p1

/)yb(-in1+M)']T 

spins spins 

T(-ipi+M)(A+iqB)Xu(p1)u(p1)(A*+iqB*)(-ip2+M)T}. (A2) 

Inserting Eq. (2.17) into (A2) and sum over the initial proton spins, (A2) becomes 
/ 1 \2r4xiV 1 I 2 1 f r / p \ 3p "I 

I E | M | 2 = ( — — — - £ ' T r \ { M d - i d ) ( l + — ) ( T - € ) - — < k - i ) ( k - y ) \ 
spins \2M/ L M 2 V 2 M J 4 deuteron I L \ . y /8 / V2&2 J 

spins 

X(in1+M){~ipl'+M)(inl+M)\(l+—)(ye) ~{k-e)(k-y)](Md-id) 

LA A/8 / V2~£2 J 

X(-ip2+M)(A+iqB)(-ip1+M)(A*+iqB*)(-ipi+M) 

( 1 \V4xiV 1 "f1 f / P V 3p/ p \ /3p\ 2 | 
= - ( — ) - ^ 3 ( l + — - ) - 2 - ( l + — ) + ( - ) \(2MMd+M/) 

\2M/ L M 2VZM J 4 I V y/i/ v2\ y/8/ W J 

XTr{(Md-id)(-iPz+M)(A+iqB)(-ip1+M)(A*+iqB*)(-ip2+M)}, (A3) 

where we have used the relationships, 
F=£*2 , k-k*=-k\ 

and 
E ' ( r - f ) = 3 , (A4) 

deuteron 
spin 

(a-d)(b-d) 
E' (a •{*)(*•*)= (a-J)+ , (A5) 

(ft-d) (**•<*) 
E'(**•«*)(*• €) = -*»+ = - £ 2 - (A6) 

The trace calculation can now be done immediately, and the result is 

1 1 r4wN I f f / " V 3 " / P\ /3<°Yl 
| E M\*= Ux2 3 ( 1 + — 1 - 2 — ( 1 + — - ) + ( - ) \2(2MMd+MiY 

spins 4 (2M)2L M 2vBf J I V V 8 / V2\ V 8 / W I 
X{\A\ils+u-2iJ?+2M*l+\B\il^-(s-Mz)(u-M^+M(u-s)(AB*+A*B)}, (A7) 

where in the last curly bracket we have set ki2= —/A With this usual on the mass shell approximation we can now 
use Eqs. (2.4) and (2.6) to reduce the original rather complicated expression into a simple form. The final result is 
given by Eq. (2.19). 
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